[Из песочницы] Простое объяснение теоремы Байеса

Автор: bio_robot
Источник: https://geektimes.ru/post/296041/
Подробно теорема Байеса излагается в отдельной статье. Это замечательная статья, но в ней 15 000 слов. В этом же переводе статьи от Kalid Azad кратко объясняется самая суть теоремы – для тех, кто впервые знакомится с ней, как и я сам.

  • Результаты исследований и испытаний – это не события. Существует метод диагностики рака, а есть само событие — наличие заболевания. Алгоритм проверяет, содержит ли письмо спам, но событие (на почту действительно пришел спам) нужно рассматривать отдельно от результата его работы.
  • В результатах испытаний бывают ошибки. Часто наши методы исследований выявляют то, чего нет (ложноположительный результат), и не выявляют то, что есть (ложноотрицательный результат).
  • С помощью испытаний мы получаем вероятности определенного исхода. Мы слишком часто рассматриваем результаты испытания сами по себе и не учитываем ошибки метода.
  • Ложноположительные результаты искажают картину. Предположим, что вы пытаетесь выявить какой-то очень редкий феномен (1 случай на 1000000). Даже если ваш метод точен, вероятнее всего, его положительный результат будет на самом деле ложноположительным.
  • Работать удобнее с натуральными числами. Лучше сказать: 100 из 10000, а не 1%. При таком подходе будет меньше ошибок, особенно при умножении. Допустим, нам нужно дальше работать с этим 1%. Рассуждения в процентах неуклюжи: «в 80% случаев из 1% получили положительный исход». Гораздо легче информация воспринимается так: «в 80 случаях из 100 наблюдали положительный исход».
  • Даже в науке любой факт — это всего лишь результат применения какого-либо метода. С философской точки зрения научный эксперимент – это всего лишь испытание с вероятной ошибкой. Есть метод, выявляющий химическое вещество или какой-нибудь феномен, и есть само событие — присутствие этого феномена. Наши методы испытаний могут дать ложный результат, а любое оборудование обладает присущей ему ошибкой.
Читать дальше
geektimes
89
0 GOLOS
0
В избранное
habreplicator
На Golos с 2017 M04
89
0

Зарегистрируйтесь, чтобы проголосовать за пост или написать комментарий

Авторы получают вознаграждение, когда пользователи голосуют за их посты. Голосующие читатели также получают вознаграждение за свои голоса.

Зарегистрироваться
Комментарии (0)
Сортировать по:
Сначала старые