[Перевод] Машинное обучение: анализ временных рядов Azure Machine Learning для поиска аномалий

Автор: sahsAGU
Источник: https://habrahabr.ru/post/343188/
Обнаружение аномалий — одна из важнейших функций для решений в области «интернета вещей» (IoT), которые собирают и анализируют временные изменения в потоке данных от различных датчиков. Во многих случаях поток данных со временем не претерпевает значительных изменений. Однако если они появляются, это чаще всего означает, что в системе возникла аномалия, способная нарушить её работу. В этой статье я расскажу, как использовать модуль Time Series Anomaly Detection сервиса машинного обучения Azure Machine Learning для определения аномальных показателей датчиков.

Читать дальше →
habrahabr
3
0 GOLOS
0
В избранное
habreplicator
На Golos с 2017 M04
3
0

Зарегистрируйтесь, чтобы проголосовать за пост или написать комментарий

Авторы получают вознаграждение, когда пользователи голосуют за их посты. Голосующие читатели также получают вознаграждение за свои голоса.

Зарегистрироваться
Комментарии (0)
Сортировать по:
Сначала старые